
Fine-Grain Authorization Policies in the GRID:
Design and Implementation

K. Keahey
Argonne National Lab, Argonne, IL, USA

V. Welch
University of Chicago, Chicago, IL, USA

S. Lang

Argonne National Lab,
Argonne, IL, USA

B. Liu
University of Houston,

Houston, TX, USA

S. Meder
University of Chicago,

Chicago, IL, USA

Abstract

In this paper we describe our work on enabling fine-grain authorization for resource usage and management. We
address the need of Virtual Organizations (VOs) to enforce their own polices in addition to those of the resource
owners, both in regard to resource consumption and job management. To implement this design we propose
changes and extensions to the Globus Toolkit’s version 2 (GT2) resource management mechanism. We describe the
prototype and the policy language that we designed to express fine-grain policies. We then analyze our solution and
describe plans for future work.

1. Introduction

Virtual Organizations (VOs) [1] have become a
common way to structure collaborations where both
participants and resources may be distributed not only
geographically, but also across different organizational
domains. A traditional mode of operation requires users
to establish direct relationships (ie., in the form of user
accounts) with resources they wished to use but didn’t
own. In a Grid environment, where both the resource
pool and the user pool are large and change
dynamically, this model becomes unmanageably
complex. We therefore observe a trend towards making
VO credentials, used in conjunction with resource
provider policies, the basis of sharing in Grids. In the
VO model, resource providers typically outsource some
subset of their policy administration to the VO. This
allows the VO to coordinate policy across resources in
different domains to form a consistent policy
environment in which its participants can operate. Such
environment requires mechanisms for the specification
and enforcement of VO-wide policies allowing the VO
to enforce VO-specific policies on tasks and resources
owned by VO participants.

Another trend developing as the Grid potential becomes
realized is the need to express and enforce fine-grain
policies on the usage of resources. These can no longer
be expressed by simple access control as the manager
want to specify exactly what fractions or configurations
of resource may be used by a given entity. In addition,

while some VOs are focused on sharing of hardware
resources (e.g. CPUs and storage), for others the
primary motivation is to coordinate sharing of
application services [2] requiring access to both
software and hardware. In these cases the VO members
should not be running arbitrary code, but only
applications sanctioned by VO policy. This policy may
also be dynamic, adapting over time depending on
factors such as current resource utilization, a member's
role in the VO, an active demo for a funding agency
that should have priority, etc.

In this paper, we answer the requirements posed by
these two trends. We present a design for service and
resource management that enables a VO and resource
managers to specify fine-grain service and resource
usage policies using VO credentials and allows
resources to enforce those policies. We implement our
design as extensions to the Globus Toolkit version 2
(GT2) resource management mechanism [3]. We then
consider policy enforcement in the context of two types
of policy targets: application services, and traditional
computing resources. A prototype of this
implementation, combined with the Akenti
authorization system [4], was demonstrated at the SC02
conference and is currently being adopted by the
National Fusion Collaboratory [2].

This paper is organized as follows. In section 2, we
present a use case scenario and concrete requirements
guiding our design. In section 3 we define our problem.

We follow this by a discussion of the capabilities of the
Globus Toolkit’s resource management (GRAM) [5]
mechanism and describe extensions needed to GRAM
to support our architecture. Finally, we analyze our
solution and conclude the paper.

2. Use Case Scenario and Requirements

In a typical VO scenario, a resource provider has
reached an agreement with a VO to allow the VO to use
some resource allocation. The resource providers think
of the allocation in a coarse-grained manner: they are
concerned about how many resources the VO can use
as a whole, but they are not concerned about how
allocation is used inside the VO.

The finer-grained specification of resource usage
among the VO participants is the responsibility of the
VO. For example, the VO has two primary
classifications of its members:

• One group developing, installing and debugging
the application services used by the VO to perform
their scientific computation. This group may need
to run many types of processes (e.g. compilers,
debuggers, applications services) in order to debug
and deploy the VO application services, but should
be consuming small amounts of traditional
computing resources (e.g. CPU, disk and
bandwidth) in doing so.

• The second group performs analysis using the
application services. This group may need the
ability to consume large amounts of resources in
order to run simulations related to their research.

Thus, the VO may wish to specify finer-grain policies
that certain users may use more or less resources than
others. These policies may be dynamic and change over
time as critical deadlines approach.

In addition to policy on the resource utilization, the VO
wishes to be able to manage jobs running on VO
resources. For example, users often have long-running
computational jobs using VO resources and the VO
often has short-notice high-priority jobs that require
immediate access to resources. This requires
suspending existing jobs to free up resources;
something that normally only the user that submitted
the job has the right to do. Since going through the user
who submitted the original job may not always be an
option, the VO wants to give a group of it’s members
the ability to manage any jobs using VO resources so
they can instantiate high-priority jobs on short notice.

Supporting this scenario places several requirements on
the authorization policy system:

1. Combining policies from different sources. In
outsourcing a portion the policy administration to
the VO, the policy enforcement mechanism on the
resource needs to be able to combine policies from
two different sources: the resource owner and the
VO.

2. Fine-grain control of how resources are used. For
the VO to express the differences between how its
user groups are allowed to use resources, the VO
needs to be able to express policies regarding a
variety of aspects of resource usage, not just grant
access.

3. VO-wide management of jobs and resource
allocations. The VO wants to be able to treat jobs
as resources themselves that can be managed. This
poses a particular challenge since jobs are
dynamic, so static methods of policy management
are not effective. Users may also start jobs that
shouldn't be under the domain of the VO - e.g. a
user may have allocations on a resource besides
through the VO and jobs invoked under this
alternate allocation should not be subject to VO
policy.

4. Fine-grain, dynamic enforcement mechanisms. In
order to support any policies, there must be
enforcement mechanisms capable of supporting
them. Most resources today are capable of policy
enforcement at the user level, that is, all jobs run
by a given user will have the same policy applied
to them. And these mechanisms are typically
statically configured through file permissions,
quota and the like. Our scenario brings out the
requirement enforcement mechanism needs to
handle dynamic, fine-grain policies.

3. Interaction Model

To support the use case described in the previous
section, we need to provide resource management
mechanisms that allow the specification and consistent
enforcement of authorization and usage policies that
come from both the VO and the resource owner. In
addition to allowing the VO to specify policies on
standard computational resources, like processor time
and storage, we need to allow the VO to specify
policies on application services that it deploys as well
as long-running computational jobs instantiated by VO
members.

In our work we will assume the following interaction
model:

1. A user submitting a request, composed of the job's
description, initiates a job. The request is
accompanied by the user’s Grid credentials, which
may include the user's personal credentials as well
as VO-issued credentials.

2. This request is evaluated against both local and VO
policies by different policy evaluation points
(PEPs), capable of interpreting the VO and the
resource management policy respectively, located
in the resource management facilities.

3. If the request is authorized by both PEPs, it is
mapped to a set of local resource credentials (e.g. a
Unix user account). Policy enforcement is carried
out by local enforcement mechanisms operating
based on local credentials.

4. During the job execution, a VO user may make
management requests to the job (e.g. request
information, suspend or resume a job, cancel a
job).

4. Grid Resource Management in GT2

Grids are the collection of middleware needed to
support VOs. The Globus Toolkit® is an
implementation of a Grid infrastructure. It provides
mechanisms for security, data management and
movement, resource monitoring and discovery (MDS)
and resource acquisition and management. In this paper
we are focusing on the functionality of resource
acquisition and management, which is implemented by
the GRAM (Grid Resource Acquisition and
Management) system [5].

The GRAM system has two major software
components: the Gatekeeper and the Job Manager. The
Gatekeeper is responsible for translating Grid
credentials to local credentials (e.g. mapping the user to
a local account based on their Grid credentials) and
creating a Job Manager Instance to handle the specific
job invocation request. The Job Manager Instance
(JMI) is a Grid service which instantiates and then
provides for the ability to manage a job. Figure 1
shows the interaction of these elements; in this section
we explain their roles and limitations.

4.1. Gatekeeper

The Gatekeeper is responsible for authenticating the
requesting Grid user, authorizing their job invocation
request and determining the account in which their job
should be run. Authentication, done using the Globus

Toolkit's Grid Security Infrastructure [13], verifies the
validity of the presented Grid credentials, the user's
possession of those credentials and the user's Grid
identity as indicated by those credentials. Authorization
is based on the user’s Grid identity and a policy
contained in a configuration file, the grid-mapfile,
which serves as an access control list. Mapping from
the Grid identity to a local account is also done with the
policy in the grid-mapfile, effectively translating the
user’s Grid credential into a local user credential.
Finally, the Gatekeeper starts up a Job Manage Instance
(JMI), executing with the user’s local credential. This
mode of operation requires the user to have an account
on the resource and implements enforcement by
privileges of the account.

Figure 1: Interaction of the main components of
GRAM

4.2 Job Manager Instance (JMI)

The JMI parses the user’s request, including the job
description, and interfaces with the resource’s job
control system (e.g. LSF, PBS) to initiate the user’s job.
During the job’s execution the JMI monitors its
progress and handles job management requests (e.g.
suspend, stop, query, etc.) from the user. As the JMI is
run under the user’s local credential, as defined by the
user’s account, the operating system, and local job
control system are able to enforce local policy on the
JMI and user job by the policy tied to that account.

The JMI does no authorization on job startup since the
Gatekeeper has already done so. However, once the job
has been started, the JMI accepts, authenticates and
authorizes management requests on the job. In GT2, the
authorization policy on these management requests is
static and simple: the Grid identity of the user making
the request must match the Grid identity of the user
who initiated the job.

4.3. GRAM Shortcomings

The current GRAM architecture has a number of
shortcomings when matched up with the requirements
we laid out in Section 2:

1. Authorization of user job startup is coarse-grained.
It is based solely on whether a user has an account
on a resource.

2. Authorization on job management is coarse-
grained and static. Only the user who initiated a
job is allowed to manage it.

3. Enforcement is implemented chiefly through the
medium of privileges tied to a statically configured
local account (JMI runs under local user
credential) and is therefore useless for enforcing
fine-grained policy or dynamic policy coming from
sources external to the resource (such as a VO).

4. Local enforcement depends on the rights attached
to the user’s account, not the rights presented by
the user with a specific request; in other words, the
enforcement vehicle is largely accidental.

5. A local account must exist for a user; as described
in the introduction, this creates an undue burden on
system administrators and users alike. This burden
prevents wide adoption of the network services
model in large and dynamically changing
communities.

These problems can, and have been, in some measure
alleviated by clever setup. For example, the impact of
(4) can be alleviated by mapping a grid identity to
several different local accounts with different
capabilities. (5) is often coped with by working with
“shared accounts” (which however introduces many
security, audit, accounting and other problems) or by
providing a limited implementation of dynamic
accounts [6].

5. Authorization and Enforcement
Extensions to GRAM

In this section we describe extensions to the GT2 Grid
Resource Acquisition and Management (GRAM) that
address the shortcomings described above.

We extended the GRAM design to allow authorization
callouts, evaluating the user’s job invocation and
management requests in the context of policies defined
by the resource owner and VO. Out changes to GRAM,
prototyped using GT2, are illustrated in figure 2.

Figure 2: Changes to GRAM; the changed
component (the Job Manager) has been highlighted

in gray.

In our prototype we experimented with policies written
in plain text files on the resource. These files included
both local resource and VO policies (in a real system
the VO policies would be carried in the VO
credentials). This work has recently been tested with
the Akenti [4] system representing the same policies as
described here, and is being adopted by the National
Fusion Collaboratory [2]. In order to show generality of
our approach, we are also experimenting with the
Community Authorization Service (CAS) [7]. Both of
these systems allow for multiple policies sources, but
have significant differences, both in terms of
architecture and programming APIs.

5.1. Policy Language

GRAM allows users to start and manage jobs by
submitting requests composed of an action, (e.g.
initiate, cancel, provide status, change priority, etc.),
and, in the case of job initiation, a job description. The
job description is formulated in terms of attributes
using the Resource Specification Language (RSL) [3].
RSL consists of attribute value pairs specifying job
parameters referring to executable description
(executable name, directory where it is located, etc.),
and resource requirements (number of CPUs to be used,
maximum/minimum allowable memory, maximum time
a job is allowed to run, etc.).

We have designed a simple policy language that allows
for policy specification in terms of RSL. The policy
assumes that unless a specific stipulation has been
made, an action will not be allowed. It is expressed as a
set of assertions where a user, or a group of users, is
related to a set of assertions. The rules have the form of
user (or group) identity separated by a colon from a set
of action-based assertions that follow the RSL syntax.

In order to express the rules we extended the RSL set
of attributes with the addition of the following:

• Action. The action attribute action represents what
the user wants to do with the job, and currently can
take on values of “start”, “cancel”, “information”,
or “signal”, where signal describes a variety of job
management actions such as changing priority.

• Jobowner. The jobowner attribute denotes the job
initiator and can take on values of the distinguished
name of a job initiator’s grid credential. It is used
mainly to express VO-wide management policy.

• Jobtag. The jobtag attribute has been introduced in
order to enable the specification of VO-wide job
management policies. A jobtag indicates the job
membership in a group of jobs for which policy
can be defined. For example, a set of users with an
administrative role in the VO can be granted the
right to manage all jobs in a particular group. A
policy may require a VO user to submit a job with
a specific jobtag, hence placing it into a group that
is manageable by another user (or group of users).
At present jobtags are statically defined by a policy
administrator.

We also added the following values to RSL:

• “NULL” to denote a non-empty value

• “self” to allow expression of the job initiator's
identity in a policy.

These extensions allow following types of assertions to
be expressed in policy:

• The job request is permitted to contain a particular

attribute a particular value or set of values. This
allows, for example, the maximum number of
processors used to be limited or to restrict the name
of the executable to a specified set. Multiple
assertions can be made about the same attribute.

• The job request is required to contain a particular
attribute, possibly with a particular value or set of
values. For example, the job request must specify a
jobtag attribute to allow its management by a VO-
defined group of administrators.

• The job request is required not to contain a

particular attribute. Either at all or just with a
particular value or set of values. For example, the
job request must not specify a particular queue,
which is reserved for high-priority certain users.

Our extensions allows a policy to limit not only the
usage of traditional computational resources, but to
dictate the executables they are allowed to invoke,
allowing a VO to limit the way in which they can
consume resources. Further, by introducing the notion
of a jobtag we are able to express policies allowing
users to manage jobs. The example in figure 3
illustrates how policy may be expressed.

The fist statement in the policy specifies a requirement
for a group of users whose Grid identities start with the
string " /O=Grid/O=Globus/OU=mcs.anl.gov". The
requirement is that for job invocations (where the
action is "start"), the job description must contain a
jobtag attribute with some value. This allows us to later
write management policies referring to a specific
jobtag.

 &/O=Grid/O=Globus/OU=mcs.anl.gov:
(action = start)(jobtag != NULL)

/O=Grid/O=Globus/OU=mcs.anl.gov/CN= Bo Liu:
&(action = start)(executable = test1)(directory = /sandbox/test)(jobtag = ADS)(count<4)
&(action = start)(executable = test2)(directory = /sandbox/test)(jobtag = NFC)(count<4)

/O=Grid/O=GlobusOU=mcs.anl.gov/CN= KateKeahey:
&(action = start)(executable = TRANSP)(directory = /sandbox/test)(jobtag = NFC)
&(action=cancel)(jobtag=NFC)

Figure 3: Simple VO-wide policy for job management

The second statement in the policy refers to a specific
user, Bo Liu, and states that she can only start jobs
using the "test1" and "test2" executables. The rules also
place constraints on the directory from which the
executable can be taken and the jobtag they can be
started with. In addition, a constraint is placed on the
number of processors Bo Liu can use (count < 4).

The third statement in the policy gives user Kate
Keahey the right to start jobs using the "TRANSP"
executable from a specific directory and with a specific
jobtag. It also gives her the right to cancel all the jobs
with jobtag “NFC”; for example, jobs based on the
executable "test1" started by Bo Liu.

5.2. Enforcing Policies in GRAM

We enforce our policies in GRAM by creating a policy
evaluation point (PEP) controlling all external access to
a resource via GRAM; an action is authorized
depending on decision yielded by the PEP. Policy can
be enforced in GRAM at multiple PEPs corresponding
to different decision domains; for example a PEP
placed in the Gatekeeper can allow or disallow access
based on the user's Grid identity. Since our work
focuses on job and resource management we
established a PEP in the Job Manager (JM). The JM
parses user job descriptions and can therefore evaluate
policy that depends on the nature of the job request in
addition to the user's identity.

Specifically, our additions consisted of the following:

• Designing an authorization callout API to
integrate the PEP with the JM. The callout passes
to the PEP authorization module the relevant
information, such as: the credential of the user
requesting a remote job, the credential of the user
who originally started the job, the action to be
performed (such as start or cancel a job), a unique
job identifier, and the job description expressed in
RSL. The PEP responds through the callout API
with either success or an appropriate authorization
error. This call is made whenever an action needs
to be authorized; that is before creating a job
manager request, and before calls to cancel,
query, and signal a running job.

• Policy-based authorization for job management.
As discussed in section 4, each job management
request other than job startup is currently
authorized by GRAM so that only the user that
started a job is allowed to manage it. We modified
the authorization in GRAM to enable Grid users
other than the job initiator to manage the job

based on policy with decisions rendered through
the authorization callout API. In addition to
changes to the authorization model, this also
required extensions to the GRAM client allowing
the client to process other identities than that of
the client (specifically, allowing it to recognize
the identity of the job originator).

• RSL parameters. We extended RSL to add the
“jobtag” parameter allowing the user to submit a
job to a specific job management group.

• Errors. We further extended the GRAM protocol
to return authorization errors describing reasons
for authorization denial as well as authorization
system failures.

In order to provide for easy integration of third party
authorization solutions, the callout API provides
facilities for runtime configurable callouts. Callouts
can be configured either through a configuration file or
an API call. Configuration consists of specifying an
abstract callout name, the path to the dynamic library
that implements the callout and the symbol for the
callout in the library. Callouts are invoked through
runtime loading of dynamic libraries using GNU
Libtool’s dlopen-like portability library. Arguments to
the callout are passed using the C variable argument list
facility.

The insertion of callout points into JM required
defining a GRAM authorization callout type, i.e. a
abstract callout type, the exact arguments passed to the
callout and a set of errors the callout may return. These
callout points are configured by parsing a global
configuration file.

6. Analysis

Our solution overcame some of the shortcomings
outlined in section 4.3. However our approach has a
number of problems and outstanding issues that we
discuss in this section.

6.1. Gateway Enforcement Model

A weakness of the gateway approach is that once a
gateway authorizes an action (for example a job
execution); it is no longer involved in the continuous
enforcement of the policy. GRAM maps incoming
requests to static local accounts to perform this
continuous policy enforcement.

This has two consequences: (1) the local policy
enforcement depends on the privileges tied the account
that the user maps to on the local system rather than to
the credential with which the request was made, and (2)
GRAM’s abilities for continuous policy enforcement
are limited by local capabilities for policy enforcement.

The first limitation could be to some extent dealt with
by using dynamic accounts. Dynamic Accounts are
accounts created and configured on the fly by a
resource management facility. This enables the
resource management system to run jobs on a system
for users that do not have an account on that system,
and it also enables account configuration relevant to
policies for a particular resource management request
as opposed to a static user’s configuration. To some
extent a dynamic account can be also used as a sandbox
on the user’s rights (by modifying user’s group
membership to control file system access for example).
On the other hand, although work has been done to
support fine-grain policy for file access [8], in general
accounts allow the user to modify only very few
configuration parameters, and hence the enforcement
implemented in an account is coarse-grained. For this
reason, dynamic accounts may need to be supplemented
by sandboxing.

A sandbox is an environment that imposes restrictions
on resource usage [9]. Sandboxing represents a strong
enforcement solution, having the resource operating
system act as the policy evaluation and enforcement
modules and is largely complementary to the gateway
approach. However, while they provide a solution with
relatively high degree of security, they are hard to
implement portably and may introduce a performance
penalty

.

6.2. Job Manager Trust Model

In the GRAM architecture, the job manager runs with
the user’s local credentials; this makes the job manager
a less than ideal vehicle for policy enforcement. The
reasons for that are twofold. First, from the security
perspective this makes it a poor choice for a policy
enforcement point since it is vulnerable to tampering by
the user that could result in changed in policy
enforcement. Secondly, this effectively limits
enforcement potential for VO-wide job management.
For example, a user managing a job may cancel a job
started by somebody else (by virtue of the fact that the
job manager is running with the job initiator’s local
credential), but they may not apply their higher
resource rights to, for example, raise the job’s priority.

One possible solution to this problem in the context of
GRAM architecture would be to locate the policy
enforcement point in the gatekeeper. However, this
would increase the vulnerability of the system by
placing more complex code into the trusted component
of the system, increasing chances for logic errors,
buffer overflows, etc.

Another possibility would be for policy enforcement to
be done by trusted services like the local operating
system. As discussed earlier, this is difficult today
because most operating systems do not have the
support for fine-grain policies that we require.
Investigation into sandboxing techniques remains an
open research issue.

6.3 Policy Language

Our implementation currently expresses policy in terms
of the same resource specification language (RSL) that
GRAM uses to describe jobs. While this allows for
easy comparison of a job description with a policy, it is
not a standard policy language. Policy administrators
are not familiar with RSL, and our initial experiences
show that expressing policies in these terms is not
natural to this community. This difficulty is
compounded by the fact that the syntax is not be
supported by standard policy tools. We are therefore
investigating existing policy languages as a
replacement to our RSL-based scheme. With the
merging of Grid technologies and Web Service-based
technologies in OGSA[10], languages based on XML,
such as XACML [11] and XrML [12], are being
scrutinized by the Grid security community in general
and are viable candidates.

6. Conclusions and Future Work

We have described the design and implementation of
an authorization system allowing for enforcement of
fine-grained policies and VO-wide management of
remote jobs. To implement this design we proposed
changes to the Globus Toolkit GRAM design and
designed a policy language suitable for our needs. We
are planning to use the same mechanism to provide
pluggable authorization in other components of the
Globus Toolkit.

While our work solves some of the problems with
GRAM, it also leaves some open questions, mainly in
the area of enforcement, where sandboxing and
dynamic account management remain open questions.
Since our work began, a new version of GRAM has

been releases as part of version 3 of the Globus Toolkit
(GT3). The new GRAM design, described in [13],
offers some enhancements that we see benefiting our
work. For example, the job description is available to a
trusted service as part of job creation, which allows it to
configure the local account, and creates potential for
better integration with dynamic accounts.

Acknowledgements

We are pleased to acknowledge contributions to this
work by Mary Thompson of LBNL. This work was
supported in part by the Mathematical, Information,
and Computational Sciences Division subprogram of
the Office of Advanced Scientific Computing Research,
U.S. Department of Energy, under contracts W-31-109-
Eng-38, DE-AC03-76SF0098, DE-FC03-99ER25397
and No. 53-4540-0080.

Bibliography

1. Foster, I., C. Kesselman, and S. Tuecke, The
Anatomy of the Grid: Enabling Scalable
Virtual Organizations. International Journal of
High Performance Computing Applications,
2001. 15(3): p. 200-222.

2. Keahey, K., T. Fredian, Q. Peng, D.P.
Schissel, M. Thompson, I. Foster, M.
Greenwald, and D. McCune, Computational
Grids in Action: the National Fusion
Collaboratory. Future Generation Computing
Systems (to appear), October 2002. 18(8): p.
1005-1015.

3. Czajkowski, K., I. Foster, N. Karonis, C.
Kesselman, S. Martin, W. Smith, and S.
Tuecke, A Resource Management Architecture
for Metacomputing Systems, in 4th Workshop
on Job Scheduling Strategies for Parallel
Processing. 1998, Springer-Verlag. p. 62-82.

4. Mary Thompson, W.J., Srilekha Mudumbai,
Gary Hoo, Keith Jackson, Abdelilah Essiari,
Certificate-based Access Control for Widely
Distributed Resources, in Proc. 8th Usenix
Security Symposium. 1999.

5. Butler, R., D. Engert, I. Foster, C. Kesselman,
S. Tuecke, J. Volmer, and V. Welch, Design
and Deployment of a National-Scale
Authentication Infrastructure. IEEE
Computer, 2000. 33(12): p. 60-66.

6. dynamic accounts.
http://www.gridpp.ac.uk/gridmapdir/.

7. L. Pearlman, V.W., I. Foster, C. Kesselman, S.
Tuecke. A Community Authorization Service
for Group Collaboration. in submitted to IEEE
Worksop on Policies for Distributed Systems
and Networks. 2002.

8. Lorch M. and K. D. Supporting Secure Ad-hoc
User Collaboration in Grid Environments. in
Proceedings of the 3rd Int. Workshop on Grid
Computing - Grid 2002, Baltimore, MD, USA.
2002.

9. Chang, F., A. Itzkovitz, and V. Karamacheti,
User-level Resource-constrained Sandboxing.
Proceedings of the USENIX Windows
Systems Symposium (previously USENIX-
NT), 2000.

10. Foster, I., C. Kesselman, J. Nick, and S.
Tuecke, The Physiology of the Grid: An Open
Grid Services Architecture for Distributed
Systems Integration. 2002: Open Grid Service
Infrastructure WG, Global Grid Forum,.

11. OASIS eXtensible Access Control Markup
Language (XACML) Committee Specification
1.0 (Revision 1). http://www.oasis-
open.org/committees/xacml/docs/s-xacml-
specification-1.0-1.doc, 2002.

12. XRML. http://www.xrml.org/get_XrML.asp.
13. Welch, V., F. Siebenlist, I. Foster, J.

Bresnahan, K. Czajkowski, J. Gawor, C.
Kesselman, S. Meder, L. Pearlman, and S.
Tuecke, GSI3: Security for Grid Services
(Draft). Submitted to HPDC 2003.

http://www.gridpp.ac.uk/gridmapdir/
http://www.oasis-open.org/committees/xacml/docs/s-xacml-specification-1.0-1.doc
http://www.oasis-open.org/committees/xacml/docs/s-xacml-specification-1.0-1.doc
http://www.oasis-open.org/committees/xacml/docs/s-xacml-specification-1.0-1.doc
http://www.xrml.org/get_XrML.asp

	Argonne National Lab, Argonne, IL, USA
	University of Chicago, Chicago, IL, USA
	B. Liu
	University of Houston, Houston, TX, USA

	2. Use Case Scenario and Requirements
	3. Interaction Model
	4. Grid Resource Management in GT2
	4.1. Gatekeeper
	Job Manager Instance (JMI)
	4.3. GRAM Shortcomings

	Authorization and Enforcement Extensions to GRAM
	5.1. Policy Language
	Enforcing Policies in GRAM

	6. Analysis
	6.1. Gateway Enforcement Model
	6.2. Job Manager Trust Model
	6.3 Policy Language

	Conclusions and Future Work
	Acknowledgements

